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Photoreceptor Sensitivity and the Shot Noise of Chemical Processes
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ABSTRACT The general modeling of dose-response curves to very low stimuli in a photosensory-effector system is critically
reshaped starting from basic assumptions on the fluctuations of chemical signals inside the receptor cell, which add to those
of the stimulus itself, both arising from their granular (or quantal) structure. We have shown, both through the analytical
treatment of a simple kinetic scheme and by means of Monte Carlo simulations of the same, that shot noise arising from
chemical transduction ("chemical shot noise") contributes considerably to the output noise of the receptor-effector system,
thus affecting both the shape and the abscissa shift of dose-response curves under these conditions; the latter phenomenon
has indeed been reported in Halobacterium halobium. After evaluating the general properties of a single-step amplifying
mechanism, the effects of introducing several low-amplifying steps in cascade were investigated briefly. The results obtained
were qualitatively and quantitatively at variance from those of earlier models on the same phenomenon, and the discrepancies
are discussed in order to highlight the fundamental contribution of chemical shot noise to the response of any kind of sensory
system to very low stimuli.

INTRODUCTION

A general feature, common to most sensory systems, is that
the response at very low levels of the stimulus becomes a
random event. The response may be of a different nature in
different systems. For instance, it can be a bump in the
potential recorded from neural cells in the Limulus eye
(Fuortes and Yeandle, 1964) or a reversal in the motor
behavior of a halobacterial cell (Spudich and Stoeckenius,
1979). In either case, when a fixed low-level stimulus is
delivered several times to the sensory system, it does not
always elicit the same response: at times a response appears,
at other times it does not.
The first attempt at interpreting the randomness of the

responses to low light stimuli was made in the early 1940s
by Hecht et al. (1942). Their approach was based on the
consideration that at very low light intensity the stimulation
itself occurs randomly, due to the quantum nature of light.

If we deliver a flash on a cell population and an average
number, a, of photons is absorbed per cell through sensory
pigment molecules, the probability that a single cell actually
absorbs m photons during the flash is given by

am
(m)m!e ~~~~~(1)

Let 1 be a fixed number of photons representing a thresh-
old of the system. Then the probability that the cell absorbs
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more than I photons is given by

0am 1-1 am
P(m ' l) =! e-a=1- > !eL

m=l m=O
(2)

This represents the dose-response curve of the system. As
a function of a, Eq. 2 describes a family of curves charac-
terized by the value of 1; the slope of these curves increases
with increasing values of 1. Moreover, the absolute sensi-
tivity, defined as I/al/2 (the reciprocal of the a value at
which the response probability is 1/2), also depends on 1,
e.g., for 1 = 1, 1/al/2 = 2, whereas for I = 2, 1/al/2 = 0.5.

In the classical approach of Hecht et al. (1942), these
expressions were used to fit the dose-response curves for the
human eye perception of dim light flashes. The tacit as-
sumption was made that the noise in the response is com-
pletely due to input noise, and no other sources of noise
were present in the intracellular signal processing. With this
in mind, the experimental fluence-response curves can be
compared with the Poisson curves in order to determine the
number of activated photoreceptors required to elicit a per-
ception.

Since then, the variability intrinsic to weak stimuli has
been used widely as the basic interpretation of response
variability. However, chemical signals are themselves made
of particles (molecules or ions). This was explained by
Borsellino and Fuortes (1968a). When elementary re-
sponses are considered, "it is essential to take into account
the stochastic fluctuations of the response in addition to the
fluctuations of the stimulus." We do not agree with the
analytical results of these two authors (Borsellino and
Fuortes, 1968a,b), which have been shown to be in error
(Goldring and Lisman, 1983), but we take their view of the
stochastic features of transduction processes as a basic start.

During the three decades after the publication of the
Borsellino-Fuortes model, minimal emphasis has been
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placed on the noise due to the chemical transmission of
signals, although the presence of noise in the visual trans-
duction pathway has been shown clearly by Lillywhite and
Laughlin (1979). The noise in chemical transduction was
invoked chiefly to account for the variability of latency
(Borsellino and Fuortes, 1968a; Lederhofer et al., 1991),
whereas the amplitude was expected to be almost fixed for
systems with a tolerable amplification. Only recently the
size variability of the response to single photons in the
ventral photoreceptors of Limulus has been measured and
related to theoretical predictions in two cognate papers
(Kirkwood and Lisman, 1994; Goldring and Lisman, 1994).
On the other hand, people working on vertebrate photore-
ceptor believe that the responses of rods to single photons
are locally saturated and that the "quantum" responses in
rods are surprisingly stereotyped. Thus the variability in
responses to dim light flashes is believed to be basically due
to the absorption of one, two, . .. , few photons (Baylor et
al., 1984). The same way to treat the problem of interpreting
the variability of responses to dim stimuli as due to the
stimulus variability is maintained in other systems (olfac-
tory neurons) (Menini et al., 1995), although there are no
specific reasons to assume that responses are locally satu-
rated.

Indeed, the pattern of the responses to dim stimuli can
display different features, depending on whether the trans-
duction process is linear. Saturation may not be present
under most circumstances, but nonlinear steps may influ-
ence the size, latency, shape, and time distribution of output
signals. A clear-cut treatment of this problem was presented
by Grzywacz and Hillman (1985) as a test for linearity of
photoreceptor transduction processes. Within that article,
noise due to chemical steps purposely was taken into ac-
count to show that when only linear (first-order) steps are
involved in transduction, each of them produces a number
of molecules distributed as a "discrete exponential." A
system behaving like this is called "nonmultiple-active-state
linear system" (Grzywacz and Hillman, 1985), because it is
assumed that chemical stages in the transduction process are
catalyzed by enzymes with only one active state.
As far as we know, noise in transduction chains has never

been taken into account in interpreting perceptive or behav-
ioral fluence-response curves. Our interest in the analysis of
the noise intrinsic to chemical transduction came from the
available data on the dose-response curves of Halobacte-
rium halobium, an archebacterium whose swimming behav-
ior is influenced by light. Comprehensive reviews on this
subject are available (Petracchi et al., 1994; Oesterhelt and
Marwan, 1990; Spudich and Bogomolni, 1988). Marwan et
al. (1988) analyzed the photophobic response of H. halo-
bium to dim blue-green flashes. The Poisson curve for a
single photon fitted their experimental data well (frequency
of reversals versus photon fluence). Thus they took this
result as evidence that a single photon is enough to excite
the transduction-chain signaling from the sensory pigment

There are, however, two technical difficulties in support-
ing this interpretation. The first one was also pointed out by
Marwan et al. (1988). Although the Poisson curve for a

single photon has the same shape and steepness as the
experimentally derived dose-response curve, the absolute a
value must be shifted by a factor ranging from 10 to 20
along the x axis. In other words, the experimental data
describe a less sensitive response than that of the theoretical
curve. A second problem is evident from data obtained on

mutants unable to synthesize retinal. In these "blind" mu-

tants, it is possible to restore the normal behavior in re-

sponse to light stimuli by introducing in the medium the
native retinal or its analogs. By varying the chromophore, it
is possible to change the lifetime of the activated pigment,
as tested by flash-photolysis experiments (Yan et al.,
1991a,b; Takahashi et al., 1992). A relevant result of such
experiments is that the absolute sensitivity of this sensory

system depends on the lifetime of the excited pigment,
whereas the slope of the dose-response curves does not (or
varies slightly with it). This point has been highlighted by
Takahashi et al. (1992). On the other hand, it may be
recalled that the shape of the curve and the absolute sensi-
tivity are closely connected in a plain Poisson model.

This gave us the motivation to look for other effects that
could contribute to the general understanding of different
sets of experimental data. We started by considering that the
noise arising from chemical reactions should be relevant
when the number of molecules taking part in the process is
low (1 * 102), as can occur for signaling molecules in a

small cell compartment. Because this noise is due to the fact
that molecules can be counted as discrete quantities, we call
this kind of noise "chemical shot noise" (CSN). To discuss
the relevance of CSN, we analyze a simple basic scheme of
enzymatic amplification. The existence of an amplifying
catalytic step in photoreception is generally accepted both in
bacteria and in eukaryotes.
We confine ourselves to analyzing the basic model de-

scribed below. We could extend this analysis, in particular
the computer simulation, to more complex schemes (for
instance that used by Forti et al. (1989) in schematizing the
visual cascade in rods). However, our present interest is to
analyze a simple model, with only a few parameters, to
establish criteria for understanding the effects of CSN. We
will discuss the following problems: the way in which CSN
is generated, its relevance compared with the input shot
noise, and how much CSN can increase the output noise
when several amplification steps are operating.

In the first section and in the Appendix, we present the
mathematical background for the treatment of the noise
inherent in phototransduction chains. Then, Monte Carlo
simulations are reported for simple schemes of signal am-

plification, and the effect of CSN on dose-response curves

is presented. The disagreement in the results with respect to
previous analyses (Borsellino and Fuortes, 1968a,b) is also

to the flagellar motor switch.
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RESULTS OF ANALYTICAL AND SIMULATION
STUDIES

Analytical treatment of the starting model

Scheme 1 shows the first step in the transduction chain of
archebacterial sensory rhodopsin. This scheme, a widely

will assume that S accumulates indefinitely. This is by no
means a realistic feature, but we shall deal later with the
decay of the signal molecule. The introduction of the
threshold mechanism is required when dealing with per-
ceptive or behavioral responses. To emphasize the role of
noise in the transduction stages, we adopt a sharp (or
stable) threshold criterion at the behavioral output of the
system. The definition of threshold stated above could be
changed (for instance, the number of S molecules exist-
ing at any time), and we found that this produced little
change in the results.
The problem is now to evaluate how many molecules of

S are formed per P* molecule. If the activated pigment lasts
a time t, k2t molecules of S are formed on the average, k2
being the probability per unit time that an S molecule is
formed. The probability that an activated pigment molecule,
lasting t seconds in the activated state, generates n mole-
cules of S is therefore given by:

P1 (n, t) = (2t)n e-k2t

inactive
products k6
Scheme 1. Minimal kinetic scheme for phototransduction in H. halobium.

accepted hypothesis to account for H. halobium photobe-
havior (Marwan and Oesterhelt, 1987), depicts the activated
pigment P* as a catalyst for a signal-producing reaction.
Although we use the time constants of this particular model,
formally equivalent schemes can be envisaged for other
photoreceptors, such as those of the visual systems of eu-
karyotes.
We shall now consider in detail what happens when a

photon is absorbed. Let us assume k2 > k4, so that at each
time the activated pigment P* has a greater probability to
promote the transformation ofX in S than to decay to P. The
activated pigment P* lasts on the average a time k'1,
assuming k3 >> k2. In this way, the time spent by the
pigment in the catalytic cycle is negligible with respect to its
decay process, and the loop acts simply as an amplifying
stage. Note that k2 is an apparent first-order rate constant,
containing the concentration of X, whose amount is in
excess of P* under the condition of low stimulation. Be-
cause k3 >> k2, the probability density function of the actual
lifetime of P* is given by the following equation (Petracchi
et al., 1994):

f(t) = k4e-k4t

(4)

PI(n, t) means probability of formation of n molecules
within t after the absorption of a single photon under the
condition that the activated pigment lasts a time t. In order
to include all possible t values, we must combine Eq. 4 with
the probability of the actual lifetime t for the activated
pigment whose probability density function isf(t) = k4e-k4t
The result is:

PI (n) J (k2t)n e-k2t k4e-k4t dt

and since f' xne-dXt = n!, by putting x = (k2 + k4)t we
finally get

PI(n) = qn(I - q) (5)

where q = k2/(k2 + I4). This is the same probability
function ("discrete exponential") used by Grzywacz and
Hillman (1985) in their linear chain model devised to test
the linearity of photoreceptor transduction processes.

PI(n) is the probability of producing n molecules of the
transducer S when a single photon is absorbed. From Eq. 5,
we obtain the average number of S molecules, which is the
amplifying factor of the loop:

k2
n== = Gk4(3)

Thus, f(t)dt is the probability that P* decays between t and
dt.

In Scheme 1, S is the signaling factor, or transducer,
acting on some effector; X is the precursor of S. We may
think that the number of S molecules ever produced must
cross a threshold in order to elicit a response. We initially

(6)

The variance of n also comes from Eq. 5:

ori = (n -n1)2 = nil(n- + 1) (7)

When two photons are absorbed, the probability that n
molecules of S are formed arises from all the possible ways
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in which complementary fractions of n are distributed
among the two photons:

n n

P2(n) = > P,(l)PI(n - 1) = 2 q'qn-(l -q)2
1=0 1=0 (8)

= (n + 1)qn( -q)2
By iteration, in the case that m photons are absorbed, we

get the general result:

(n+1l)(n +2). ..(n +m-1)
P. (n) = qn (1- q)m

n 1(m-1)! (9)

Because the system is linear, nm = m X n- and the standard
deviation of nm is o(m = /m X o-. This variability in the
number of S molecules is due completely to the transduction
process, because m is a fixed number. A simple numerical
example may help to make this point clear: for m = 10 and
n, = 10, we get n1o = 100, with SD o-m 33. This noise
is quite relevant. The variation coefficient (defined as the
ratio of the standard deviation to the mean) is the same as
that of the activated pigment number when 10 photons on
average are absorbed, because the standard deviation of a
Poisson process is the square root of the mean.
The following question was then considered: Is CSN

relevant when compared with the input noise? To answer
this, we carried out the computation of the standard devia-
tion expected when a photons on average are absorbed, by
combining oam with the Poisson law (see Appendix A).
Obviously, we have n<a = G a, whereas for the standard
deviation we obtain, for high gain:

F2Ga (10)

Equation 10 tells us that at the output of the enzymatic loop
the variation coefficient (ratio between the standard devia-
tion and the mean) is increased by the factor 21/2 when
compared with the input, thus showing that CSN is not
negligible. This holds for high values of G; when the gain is
low, the increase in the variation coefficient is higher than
21/2 (see Appendix A, Eq. A5).

Computer simulations on the starting model

To get an intuitive vision of the behavior of the model in
Scheme 1, we carried out computer simulations. A finite
time constant (k6) for the decay of S was introduced as a
more realistic feature. The differential equations describing
the macroscopic behavior of this system (see Scheme 1) are

d[P*]
d k3[P* X] - (k2 + k4)[P*]

d[P* X]
= k2[P*] - k3[P* X] (11)

d[S]
dt = k3[P* X]- 6[S1]

Because of the linear structure of the system, Eq. 11 also
give its average behavior when the number of involved
molecules is low (Borsellino and Fuortes, 1968a).

At the microscopic level, it is important to realize that
each chemical transformation is a probabilistic process;
therefore, in the simulations, the rate constants of the
scheme are used as the probability densities of transition for
the corresponding species (for each single molecule). Sim-
ulations are performed step by step, and a time interval At
much shorter than the shortest time constant in the scheme
is chosen. In this way, k.At << 1 can be used as a proba-
bility. At each step, a random number (uniformly distributed
in the range 0 . 1) is generated; each molecule of each
chemical species can either undergo a transition or remain
in its original state, according to whether the random num-
ber is in the range knAt.

Fig. 1 A shows the raw traces of the time course of S in
the case that a fixed number of photons are absorbed by the
cell; the noise in the output is entirely due to CSN. In Fig.
1 B, we report the average and standard deviation of 100
trials obtained with the same parameters as in Fig. 1 A. By
setting k6 = 0 (no decay of S molecules), the standard
deviation of simulated data agrees perfectly with Eq. 7,
which is a test of the simulation.
The standard deviation reported in Fig. 1 B varies with

time and also differs at two time values corresponding to
identical values of the mean, a result at variance with the
prediction of Borsellino and Fuortes (1968a). This point
deserves a detailed discussion. In their fundamental paper,
Borsellino and Fuortes (1968a) were looking for a general
expression for the probability of having n molecules of
transducer at time t upon the absorption of a single photon.
They obtained the following result:

P(n, t) = n!) e-m(t) (12)

(Equation 12 is a copy of Eq. 28A in Borsellino and Fuortes
(1968a), with slight changes of symbols.) Although this
result has been shown to be incorrect (Goldring and Lisman,
1983), the Borsellino-Fuortes model is still considered
valid. In this equation, the first member is the probability of
having n molecules at time t (after an arbitrary number of
amplifying steps), whereas m(t) is the average number ex-
pected at time t. Equation 12 states that the distribution of
the number of molecules during a chemical amplification is
a Poisson distribution and implies that the standard devia-
tion is at each time t the square root of the average number
expected at that time, so that the higher the amplification,
the lower the variation coefficient.
On the other hand, our Eq. 7, which holds for an infinite

decay time, states that upon the absorption of a single
photon the variation coefficient cannot be lower than the
mean, whatever the amplification factor may be. As stated
above, the simulation with k6 = 0 perfectly agrees with the
prediction of Eq. 7. Fig. 2 reports the mean and standard
deviation of 100 raw traces in the case that one photon is
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FIGURE 1 (A) Simulated time courses for the number of S molecules
upon the absorption of 10 photons; k2 = 143 s-'; k4 = 14.3 s-'; k6 = 3
s- 1. Ten raw traces are reported. (B) The mean (solid line) and standard
deviation (dashed line) of 100 raw traces obtained as in A are reported.

absorbed. The standard deviation derived from Eq. 12,
displayed by the dotted line in Fig. 2, is the square root of
the mean and is far different from the simulated value. Note
also that the standard deviation according to Borsellino and
Fuortes (1968a) takes on the same value for equal values of
the average on both the increasing and the decreasing part of
the time course, which does not occur in the simulation. The
correct equation obtained by Goldring and Lisman (1983)
(instead of Eq. 12) is too cumbersome, however, to be used
straightforwardly. We therefore adopted Eq. 7 in the fol-
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FIGURE 2 The mean (solid line) and standard deviation (dashed line) of
100 raw traces obtained with the same parameters as those of Fig. 1 upon
the absorption of a single photon. The dotted line is the standard deviation
expected from Eq. 28A of Borsellino and Fuortes (1968a).

lowing treatment of the transduction model and accordingly
used the accumulation value of S molecules.

In a real experiment, the actual number of absorbed
photons fluctuates randomly according to Poisson statistics.
Fig. 3 reports the results from simulations in which the
number of actually absorbed photons in each run was ran-
domly selected according to Poisson distribution. One hun-
dred trials were performed, with an average number of 10
absorbed photons and a 10-fold gain, and their standard
deviation is displayed by the solid line. The dashed lines in
Fig. 3 are obtained through Eq. 11, fed with any number of
photons (i.e., P* molecules). The resulting curves, each
multiplied by their Poisson weight to take into account the
input noise, were then averaged, and their standard devia-
tion was computed accordingly. Because of the linear struc-
ture of the system, the mean value of the simulation (not
shown in Fig. 3) practically coincides with that of the
analytical solution of Eq. 11, but its standard deviation is
always higher than that obtained by the analytical solution.
Therefore, the noise intrinsic to chemical transduction ac-
tually contributes to the output noise. The simulated stan-
dard deviation, at its maximum in Fig. 3, is 1.4 (-2 12)
times higher than that because of the input noise alone
(curve (b)), in fairly good agreement with Eq. 10, although
this equation was derived for an accumulating product.

Interpretation of dose-response curves

Now let us come back to the meaning of Eq. 9. Clearly,
what is important is the number of S molecules produced,

n
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FIGURE 3 Time course of mean value and standard deviation of S
molecules produced by simulation with an average number of 10 absorbed
photons. Dashed lines are the mean (a) and standard deviation (b) calcu-
lated from the analytical solution of Eq. 11; the solid line (c) is the standard
deviation for 100 raw traces obtained by Monte Carlo simulation. The
mean values of the simulation (not shown) practically coincide with that of
the analytical solution.

not the number of photons that actually produced them.
Equation 9 states that the same number of S molecules can
be produced (with different probabilities) by different num-
bers of photons, as can readily be appreciated from Fig. 4.
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FIGURE 4 Probability that a certain number of S molecules are pro-
duced after the absorption of a fixed number of photons (m); the amplifi-
cation factor is 10.

Therefore, until now the question about the interpretation of
dose-response curves has been conceptually incorrect, and
we shall reshape it as follows.
When a dim light flash is delivered on a cell population,

different numbers of photons will be absorbed by each cell.
Let us assume that a sharp threshold criterion holds for the
response to occur. Upon the absorption of a fixed number of
photons (m), the response arises when the number (n) of S
molecules crosses a threshold value X. Then, the probability
of response Presp(m) is given by

00esp(m =(n + 1)(n + 2) ...(n+m-1)Prep(M) = E qn(I - q)m (m - 1)!
n=X

(13)

In the bar diagram of Fig. 5, each bar represents a fraction
of the cell population (total = 1) according to the number of
photons (m) actually absorbed (the number below each bar),
with a = 1. The probability of response calculated from Eq.
13, with q = 0.91 (k2/k4 = 10), is used to evaluate the
percentage of cells that do respond to the light flash (black
area in each bar of Fig. 5).

It is evident that Eq. 13 cannot be used directly to analyze
experimental data when the actual number of absorbed
photons by any single cell is unknown. In order to adopt a
as a measure of stimulus intensity, Eq. 13 has to be com-
bined with the Poisson expression (1) to give

a0m
Fresp(a) = I Presp(m) m! e a

m=l
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FIGURE 5 Bar diagram illustrating the percentage of responding cells
after the absorption of different numbers of photons; k2/k4 = 10, a = 1, X
= 10. The numbers below each bar are the photons actually absorbed by
that percentage (= height of the bar) of cells; the fraction of responding
cells in each bar is shown by the black shading, whereas the hatched area
shows the fraction of cells that do not respond.

116 Biophysical Journal

.1-1



Chemical Shot Noise and Sensitivity

Now, Fresp(a) and a can be experimentally determined
and Presp(m) can be calculated, thus allowing the use of
Eq. 14 to fit curves to experimental data. Fig. 6 reports
three dose-response curves computed according to Eq. 14
with different X values; the steepness of these curves
increases with the value of X. The curve on the left is
nearly as steep as that from Eq. 1 with 1 = 1, but it is
shifted along the x axis by a factor of -3. The shift for
the H. halobium dose-response curves was found exper-
imentally to be nearly 10 (Marwan et al., 1988). How-
ever, we could not obtain a higher shift even though
many different values were used for the kinetic parame-
ters of the model.

Models with a cascade of amplifying loops
The results of the preceding section have shown that when
phenomena like those observed in H. halobium (Marwan et
al., 1988) are to be interpreted, the simple model initially
considered cannot account quantitatively for the experimen-
tally observed shift. Generally speaking, it is also unusual to
find a photoreceptor transduction chain made up of just a
single catalytic loop. In this section we therefore want to
discuss the effects ofCSN in a receptor system when a more
general scheme with a cascade of (linear) amplifying loops
is assumed.

In Appendix B, we derive expression (B3) for the stan-
dard deviation of the final product S of the amplifying
cascade. Let us discuss here briefly the meaning of expres-
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(0
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0.cm
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FIGURE 6 Computed dose-response curves for a photosensory-effector
system with G = k2lk4 = 10. The probability of the response is plotted
against log a. The three curves (solid lines) differ for the threshold value:
left curve, X = 10; middle curve, X = 20; right curve, X = 40. The dotted
line is a Poisson curve with I = 1.

sion (B3), which for identical loops with the same amplifi-
cation factor becomes

= k-G I 1+

1=0
(15)

The qualitative behavior of the system is not changed by
introducing several amplifying loops in the cascade, pro-
vided the amplification factor of each stage is substantially
greater than one. Responses to a single photon still have an
exponential distribution, as shown also by Grzywacz and
Hillman (1985) and by Goldring and Lisman (1994), and the
ratio of the standard deviation to the mean changes little
from that arising from the first loop, as the contribution of
IIG and its powers is small.
When G is low at every step and considerable amplifica-

tion arises only after many steps, however, a noticeable
increase in the standard deviation occurs. This is best shown
by considering an overall value of G = 10. When this value
is obtained in a single step, the output has a oa = 1.45G/a,
whereas when it is obtained in 10 steps, each with G = 1.26
(and 1.2610 10), one gets o- = 2.97G1/ca. Once again our
results differ from those of Borsellino and Fuortes
(1968a,b). The standard deviation coming out of Eq. 28A in
Borsellino and Fuortes (1968a) is the square root of the
average and consequently does not depend on the number of
amplifying stages or on their order. It depends only on the
overall amplification.
A low amplification factor implies a considerable prob-

ability that the catalyst of a chemical step decays to the
inactive state before ever producing a single molecule of
transducer (failure in molecular amplification). This phe-
nomenon, discussed by Grzywacz and Hillman (1985) and
thoroughly investigated by Goldring and Lisman (1994),
could account for the shift in sensitivity of the dose-re-
sponse curve in H. halobium and provide an interpretation at
the molecular level of the low photon yield found by Mar-
wan et al. (1988). By the same token, when the first few
steps in the cascade do not amplify (G = 1) and are
followed by an amplifying step, a similar effect on the
dose-response curve is expected. This type of cascade was
adopted by Goldring and Lisman (1983) in a simulation of
quantum bump kinetics of the Limulus ventral receptors.
However, we must take into account that changing the time
constants of the pigment photocycle produces a shift in the
experimental dose-response curves without affecting their
slope (Takahashi et al., 1992). We therefore had to find
what out happens in the model when the gain in the first step
is changed.
We found that the increase of noise in a chain of ampli-

fying loops with a low amplification per loop, predicted by
Eq. 15, affects the dose-response curves, and it becomes
possible to obtain dose-response curves overlapping to Eq.
1 with 1 = 1 but shifted on the a axis by a factor of 10, as
shown in Fig. 7. This curve has been obtained by simulating
a 10-step transduction chain, each step having G = 1.26, fed
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FIGURE 7 Computed dose-response curves for a photosensory-effector
system acting through 10 low-amplifying loops in cascade. In each ampli-
fying step, G = 1.26. The three curves (solid lines) differ for the threshold
value: left curve, X = 10; middle curve, X = 20; right curve, X = 30. The
dotted line is a Poisson curve with 1 = 1.

with 1, 2, 3 ... m photons. A threshold criterion on the
output of the cascade was used to evaluate the probabilities
of response as a function of m. These probabilities were
eventually combined with the Poisson law according to Eq.
14 to obtain the dose-response curve. By adopting this kind
of scheme, it is possible to account for the relevant features
of experimental dose-response curves for the motile photo-
behavior of H. halobium (Marwan et al., 1988; Takahashi et
al., 1992). When the threshold is kept constant and the value
of G of the first step is increased, the simulated curve is
shifted to the left and coincides with a true Poisson curve
with 1 = 1 (not shown), in agreement with the experimental
data cited above.
Ten stages may seem to be too many. Similar results

could be obtained with fewer stages (for instance, five) by
setting to one the gain of the first three to four stages,
amplification arising from the last stage; the first stage
becomes amplifying when the pigment is changed (results
not shown).

DISCUSSION

In devising the basic model to investigate the general prop-
erties outlined here, we aimed to include the minimal fea-
tures of a sensory-effector transduction system. Therefore,
the outcomes of this study are to be considered as funda-
mental properties of any such system, and a real sensory

model before any ad hoc hypothesis is introduced to explain
its behavior.

At present we can put forth some general remarks on
sensory transduction through enzymatic amplification
processes by summarizing the results reported above, as
well as those of other authors, in the following points. 1)
The amount of transmitter produced upon the absorption
of a few photons is not fixed but varies stochastically. In
particular, an exponential distribution of the whole
amount of transmitter produced upon the absorption of a
single photon is expected (see also Kirkwood and Lisman
(1994) and Grzywacz and Hillman (1985)). 2) Because
the standard deviation of exponential distribution is equal
to the mean, appreciable noise arises from the fluctua-
tions because of a single-step enzyme amplification, and
this shot noise is comparable to the input noise; the
output variation coefficient increases, with respect to the
input noise, by a factor --/2 for a single amplifying loop
with large gain. 3) CSN in a single amplifying step can
partially account for the discrepancy between experimen-
tal dose-response curves in H. halobium and the Poisson
single-photon curve, because the variability intrinsic to
chemical amplification can generate a lower absolute
sensitivity, but not so low as to yield a 10- to 20-fold shift
along the a axis. A cascade of low-gain amplifying loops
could account instead for shifts of the same order as those
experimentally observed.
The point that we want to stress is that the currently

accepted interpretation of fluence-response curves (of H.
halobium and perhaps of human perception) in terms of the
minimum number of photons required to elicit a response
should be reformulated considering the probabilities that 1,
2, 3, . . . n photons will give rise to a sensation or a change
in behavior. An attempt in this direction was made in
modeling the H. halobium dose-response curves (Takahashi
et al., 1992) by making the overall "quantum yield" of the
transduction process a (nonlinear) function of the number of
actually absorbed photons. We show that nonlinear steps in
the amplifying cascade are not required to reformulate the
problem of photon requirement in probabilistic terms, be-
cause an answer to this problem simply comes out of basic
statistical causes, independently of the details in the trans-
duction process. Molecular failure in transduction, when the
amplification factor is low, can thus account for the lower
sensitivity of the system and for the intuitive interpretation
that just 1 out of 10-20 activated pigment molecules have
success in reversing the motion (Marwan et al., 1988). A
quantitative fitting of the present models to experimental
data should await the acquisition of more details (e.g.,
amplification coefficient for the first stage) on the real
transduction system of H. halobium.
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APPENDIX A

Calculation of the standard deviation for the
responses elicited when flashes of a average
photon fluence are delivered on a photosensitive
sample

As observed in the text, because the system is linear, the responses to m
photons are given by the sum of m responses to a single photon. Thus, the
average number of signaling molecules produced by m photons is rim = mni,
= mG, and the standard deviation Oqm = j Xf = \I UG(G+ 1).

Consider now a real experiment in which flashes of constant average
energy a are delivered on a photosensitive sample. The actual number of
absorbed photons will be distributed according to Eq. 1. Because the
system is linear, we will have ni, = Ga. A set ofN trials can be divided into
subsets Imn on the basis of the number m of actually activated photorecep-
tors. Let N(m) be the number of trials belonging to Im; then, where Ppjm)
is given by Eq. 1 in the text. We want now to obtain an expression for the
variance relative to the general average R. = Ga. By definition, the
variance is given by

r2= N (nj - Ga)2 (Al)(J> N
J=1

and we can write it as

2= E o2mP0is(m) (A2)
m

where o,2. is the contribution to the variance from subset Im.
Let ni,m be the actual number of S molecules produced in the ith trial

(flash) belonging to the Im subset. In this subset, the average number of S
molecules is Gm, and the local variance is G2m. The variance relative to the
general average Ga is

N(m) [(ni'm- Gm) + G(m - a)]2

i-} N(m) (A3)

= G2(m-a)2 + N(mE(i Gr)2

The last term on the right in Eq. A3 is the local variance o2m = G2M,
thence we can rewrite Eq. A2 as

02 = > [G2(m- a)2 + G2m + Gm]Ppojs(m) (A4)
m

and finally

o2 =G2 (pois + G2 a+ Ga = 2G2 a + Ga (A5)
Equation A5 means that the output noise after a transduction step is
actually increased over the input noise. The variation coefficient (standard
deviation/mean value) is 2 -/a in the output, where the equal sign holds
for high gain. Since 1/ \;a is the same ratio in the input, the output variation
coefficient is increased at least by the factor X after a single.amplification
step, so that the signal-to-noise ratio is decreased by the same amount.

APPENDIX B

Calculation of the standard deviation in the
output of a multi-step amplifying cascade
In deriving this result, we assume that a signal molecule is produced after
a number of steps consisting of catalytic amplifying loops and that this

molecule does not decay. We are interested in the number of molecules that
accumulate after a dim flash, its mean and variance.

Consider an amplifying chain of n steps. Equation A4 can in general be
written as follows:

0

(k=E[GI m m + Gm + GkM]Pk- I(M) (B 1)

where Gk is the gain of the step k, min is the mean value of the number of
molecules produced at the step k-1, m is the number of molecules at the
step k-i in each single trial, and Pk-l(m) is the probability of m. Equation
A5 is now substituted by

&-2k= Gk (rk-1 + o2k-) + Gk kl (B2)

with k 2 1.
From Eq. B2, by iteration and remembering that the input obeys Poisson

statistics, one gets:

o= a mO=a

o =G2(a+a)+G1a ; -ml=Gla

oC2= G2G1a(2+-+ G ) ; m2= GG2aGI GIG2 (B3)

2
Pk a(x2 4+1p) ; -+m =Pka

where Go = 1 and P=lk G0
Equation B3 states that the output variance after n steps does not depend

solely on the mean. Moreover, when an overall amplification P is reached
through two steps with respective amplifications G1 and G2, the sequence
of these two steps (i.e., which one precedes the other) may be relevant. For
GI > G2, the output noise is lower, which is highly plausible and predict-
able but is in striking disagreement with the equation derived by Borsellino
and Fuortes (1968a,b).
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